
Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

122 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

SOFTWARE ENGINEERING MODELS 
 

SAJAN EV 

Head of Department, 

Computer Hardware Engineering, 

Government Polytechnic College, Palakkad, Keralam-678551 

 

 

ABSTRACT 

Good-quality software is designed, developed, and tested using a structured process called the software 

development life cycle (SDLC). Software development life cycle, or SDLC, is a technique that outlines each 

phase of the software development process in detail. Delivering high-quality, maintainable software that 

satisfies user needs is the aim of the SDLC life cycle model. The software development life cycle (SDLC) in 

software engineering models specifies the plan for each stage so that each stage of the model may carry 

out its role effectively to produce the software at a cheap cost within a specified time frame that satisfies 

customers' needs. 

 

Keywords:- SDLC; models; waterfall model; prototype; spiral model. 

 

INTRODUCTION 

The software industry uses the Software Development Life Cycle (SDLC) method to plan, create, 

and test high-quality software. The goal of the SDLC is to create high-quality software that meets 

or exceeds customer expectations while finishing on schedule and under budget. [1] 

The term "Software Development Life Cycle" (also known as "Software Development Process") 

refers to a framework that specifies the actions to be taken at each stage of the software 

development process. An international standard for software life-cycle procedures is ISO/IEC 

12207. It seeks to serve as the benchmark for all activities involved in creating and maintaining 

software. 

SDLC is a technique, approach, or cycle that is trailed by a product improvement association while 

fostering any product. SDLC models were acquainted with following a trained and precise 

technique while planning programming. With the product advancement life cycle, the course of 

programming configuration is separated into little parts, which makes the issue more reasonable 

and simpler to settle. SDLC includes an itemized depiction or bit-by-bit plan for planning, creating, 

testing, and keeping up with the product. 

 

 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

123 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

PHASES OF THE PRODUCT IMPROVEMENT LIFE CYCLE MODEL 

SDLC indicates the task(s) to be performed at different stages by a computer programmer or 

designer. It guarantees that the final result can live up to the client's assumptions and fits inside the 

general spending plan. Thus, a product designer really must have earlier information on this 

product improvement process [2]. 

The SDLC model includes six stages or stages while fostering any product. SDLC is an assortment 

of these six phases, and the phases of SDLC are as per the following: 

Stage-1: Arranging and Prerequisite Examination 

Arranging is a pivotal move toward everything, similar as in programming improvement. In this 

equivalent stage, the prerequisite examination is likewise performed by the designers of the 

association. This is accomplished from client data sources, and outreach group/market studies. 

The data from this investigation shapes the structural blocks of a fundamental undertaking. The 

nature of the undertaking is a consequence of arranging. Accordingly, in this stage, the 

fundamental venture is planned with all the accessible data. [4] 

Stage-2: Characterizing Necessities 

In this stage, every one of the prerequisites for the objective programming are determined. These 

prerequisites get endorsement from clients, market experts, and partners. 

This is satisfied by using SRS (Programming Prerequisite Determination). This is a kind of report 

that indicates everything that should be characterized and made during the whole undertaking 

cycle. 

Stage-3: Planning Engineering [5] 

SRS is a reference for computer programmers to concoct the best design for the product. Thus, 

with the necessities characterized in SRS, different plans for the item engineering are available in 

the Plan Report Particular (DDS). 

This DDS is surveyed by market experts and partners. Subsequent to assessing every one of the 

potential factors, the most viable and coherent plan is picked for improvement. 

Stage-4: Creating Item 

At this stage, the basic advancement of the item begins. For this, engineers utilize a particular 

programming code according to the plan in the DDS. Consequently, the coders should follow the 

conventions set by the affiliation. Traditional programming devices like compilers, translators, 

debuggers, and so forth are additionally placed into utilization at this stage. A few well-known 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

124 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

dialects like C/C++, Python, Java, and so on are placed into utilization according to the product 

guidelines. 

Stage-5: Item Testing and Joining [6] 

After the improvement of the item, testing of the product is important to guarantee its smooth 

execution. Albeit, negligible testing is led at each phase of SDLC. Consequently, at this stage, 

every one of the likely imperfections is followed, fixed, and retested. This guarantees that the item 

goes up against the quality necessities of SRS. 

Documentation, Preparing, and Backing: Programming documentation is a fundamental piece of 

the product improvement life cycle. An elegantly composed report goes about as a device and 

means to data vault important to realize about programming cycles, capabilities, and upkeep. 

Documentation additionally gives data about how to utilize the item. Preparing to try to further 

develop the current or future representative presentation by expanding a representative's capacity 

to manage learning, normally by changing his disposition and fostering his abilities and 

understanding. [5-6] 

Stage 6: Sending and Support of Items 

After itemized testing, the convincing item is delivered in stages according to the association's 

procedure. Then, at that point, it is tried in a truly modern climate. Guaranteeing its smooth 

performance is significant. On the off chance that it performs well, the association conveys the 

item in general. Subsequent to recovering valuable input, the organization discharges it for all 

intents and purposes or with assistant enhancements to make it further supportive for the clients. 

Be that as it may, this by itself isn't sufficient. In this manner, alongside the organization, the item's 

management. 

Programming improvement presence cycle models are systems that manually the advancement of 

programming program assignments from start to end. There are a few programming improvement 

presence cycle molds, each with its own arrangement of advantages and downsides. In this 

response, we will think about a portion of the most extremely famous programming improvement 

life cycle styles, comprehensive of the Cascade rendition, the Deft form, and the Twisting variant. 

[6-7] 

WATERFALL MODEL 

The Waterfall model is a linear and sequential model that follows a strict series of steps inside the 

software improvement system. It includes five levels: Requirements accumulating and analysis, 

Design, Implementation, Testing, and Maintenance. Each phase has to be finished earlier than 

transferring on to the next phase. The Waterfall version is useful while necessities are truly defined, 

and modifications are not likely to arise in the course of the task. However, this version isn’t always 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

125 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

desirable for projects that require flexibility and steady changes. It also can be hard to perceive 

issues early on in the manner. [8] 

The Classical Waterfall Model 

A linear approach to software development, the traditional waterfall model first appeared in the 1

970s.  

It separates the software development process into discrete stages that must be completed one after 

the other before moving on to the following stage. 

The steps-based process used in manufacturing and construction served as the model’s inspiration. 

The Classical Waterfall Model contains numerous phases. 

Collecting Requirements:  

• At this stage, project requirements are collected from the client or stakeholders. 

• The requirements are examined for potential risk, scalability, and additional scopes.  

• System Design: The architecture of the system’s design is specified at both the high level and 

low level. 

• Software Implementation: This stage involves physically coding the software. 

• Code is created by programmers. Programmers develop code in accordance with the design 

specification. The stage leads to the development of software modules and components. 

• program testing: The program is thoroughly examined for faults, bugs, and defects.Testing of 

various kinds, including system testing, integration testing, and unit testing, is done.  

• Software Deployment: After thorough software testing, the software is placed in the user’s 

production environment. 

• Software maintenance: The traditional waterfall model’s last and final phase. This stage sees the 

software’s continuing support and maintenance. 

Advantages of the Classical Waterfall Model 

• Clear and Organized process: The model is exceptionally direct and it is extremely simple to 

execute. 

• Documentation: Each stage requires documentation, which points to better comprehension, and 

information move between the colleagues. 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

126 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

• Appropriate for the little undertaking: Exemplary cascade model turns out really great for the 

little venture. 

Disadvantages of the Classical Waterfall Model 

• Inflexible: The consecutive idea of the model makes it firm to change. In the event that the 

prerequisite changes after the task goes to the following stage, it turns out to be so tedious and 

savvy to revamp the new changes. 

• Variable requests are difficult to meet: This method accepts that all client needs can be 

unequivocally determined at the start of the undertaking, yet clients' necessities change with time. 

After the necessities definition, revision demands are intense. 

• Late identification of Imperfections: Deformities are not distinguished until the testing stage 

comes into the picture and after that settling that specific imperfection becomes expensive. 

• Risk the board: The model's design can prompt an absence of legitimate gambles for the 

executives. 

THE ITERATIVE WATERFALL MODEL 

The iterative waterfall model is the changed variant of the traditional cascade model. The iterative 

cascade model follows the consecutive programming improvement process. In the customary 

Cascade Model, each stage is done prior to happening to the following one, and there isn't any 

such extension to return to stages that have previously been finished. Then again, the iterative 

cascade model proposes "emphases" to let remarks, changes, and enhancements occur during the 

improvement interaction. 

• Gathering Prerequisites: Like the traditional cascade model, project necessities are gained from 

the client or partners at this stage. The prerequisites are investigated for additional degrees, 

adaptability, and expected risk. 

• Planning Framework: This stage incorporates the significant level and the low-level plan 

determination of the framework's design. 

• Execution of Programming: During this stage, the actual coding of the product happens. Software 

engineers foster code as per the plan details. This stage prompts the advancement of 

programming modules and parts. 

• Testing of Programming: The product is tried appropriately with imperfections, bugs, and 

mistakes. A few sorts of testing are performed like Unit testing, Mix testing, and framework 

testing. 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

127 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

• As of now assessment Stage: Emphasis becomes possibly the most important factor. Rather than 

placing the product into utilization just in the wake of testing, partners check it out. Criticism is 

gathered, and any progressions that should be made are found. 

• Change Stage: In the change stage, changes are made to the product, plan, or necessities in view 

of the remarks and assessments. 

• Emphasis: Emphasis occurs taking into consideration gradual enhancements in light of partner 

criticism and evolving prerequisites. 

Advantages of the Iterative Waterfall Model 

• Consolidating Criticisms: In conventional cascade, there was no choice for the input except for 

the Iterative cascade model that gives the honor of working the criticism from one stage to the 

past stage. 

• Constant Improvement: As the product is run again and again, it gets endlessly better over the 

long run. 

• Greater Adaptability: Contrasted with the conventional Cascade Model, the model can all the 

more likely adjust to changes in needs. 

Disadvantages of the Iterative Waterfall Model 

• Increased Complexity:  Monitoring emphasis and numerous rounds can make the task of the 

board cycle more muddled. 

• Time and Cost: Emphasis can take additional time and cost more cash in the event that they are 

not dealt with well. 

AGILE MODEL 

The iterative and incremental approach used in the Agile version is for software improvement. 

This version is mostly based on the Agile Manifesto, which places a strong focus on flexibility, 

teamwork, and quick market response. Agile software development entails the delivery of 

operational software in many short iterations, often spanning one to four weeks. The Agile version 

is highly recommended for projects with quickly changing requirements or for teams who value 

cooperation and communication. However, this strategy necessitates an excessive amount of group 

members' cooperation, and managing big projects could be challenging. 

Advantages of the Agile Model 

• Flexibility: Agile initiatives are flexible because they can quickly adapt to suit changing 

demands, goals, and market conditions. 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

128 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

• Agile projects aid in generating software in fewer iterations, which ultimately impacts the ability 

to monitor genuine progress and make adjustments quickly. 

• Customers are more satisfied when valuable features are delivered over time thanks to agile.  

• Continuous Improvement: Agile teams assist businesses in enhancing their operations to increase 

productivity and efficiency.  

Disadvantages of the Agile Model 

• Lack of Predictability: Due to Agile's flexibility, it might be challenging to provide a precise est

imate of project costs and timetables for some long-term projects.  

• Complex project management: Due to Agile's development in incremental increments, effective

 project management is necessary to maintain project objectives. 

SPIRAL MODEL 

The Spiral version combines aspects of both the Waterfall and Agile models in a chance-driven 

manner. This methodology calls for continuous risk assessment and mitigation throughout the 

software development process. Planning, Risk Analysis, Engineering, and Evaluation are the four 

tiers of the Spiral version. Each section combines the planning, designing, implementing, and 

trying out processes. This version is helpful when handling large or difficult assignments when 

requirements are not well defined. The Spiral approach can, however, consume a lot of time, and 

it might be challenging to determine when to switch between segments. 

 

SELECTION OF APPROPRIATE EXISTENCE CYCLE MODEL FOR A 

VENTURE 

Choosing the right lifecycle model to complete a task is the most indispensable task. It might very 

well be settled on by means of keeping up with the advantages and disadvantages of different 

models at the top of the priority list. The novel inconveniences that are investigated sooner than 

picking a fitting way of life cycle model are given below: 

• Qualities of the product to be created: The decision of the existence cycle model generally relies 

upon the kind of the product that is being created. For little administration projects, the dexterous 

model is inclined toward. Then again, for the item and inserted advancement, the Iterative 

Cascade model can be liked. The transformative model is reasonable to foster an article-situated 

project. UI a piece of the task is principally evolved through prototyping models. 

• Qualities of the improvement group: Colleague's expertise level is a significant variable in 

concluding the existence cycle model to utilize. On the off chance that the improvement group is 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

129 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

knowledgeable about creating comparable programming, even inserted programming can be 

created utilizing the Iterative Cascade model. On the off chance that the improvement group is 

completely beginner, even a basic information handling application might require a prototyping 

model. 

• Risk related to the task: On the off chance that the dangers are not many and can be expected 

toward the beginning of the undertaking, then the prototyping model is valuable. On the off 

chance that the dangers are challenging to decide toward the start of the undertaking yet are 

probably going to increment as the advancement continues, then, at that point, the twisting model 

is the best model to utilize. 

• Attributes of the client: In the event that the client isn't exactly acquainted with PCs, then, at that 

point, the necessities are probably going to change every now and again as shaping total, 

predictable, and unambiguous requirements would be troublesome. Subsequently, a prototyping 

model might be important to diminish later change demands from the clients. At first, the client's 

certainty is high in the advancement group. During the extended improvement process, client 

certainty typically drops off as no functioning programming is yet apparent. Thus, the 

developmental model is helpful as the client can encounter somewhat working programming 

significantly sooner than the entire complete programming. One more benefit of the 

developmental model is that it lessens the client's injury of becoming accustomed to an altogether 

new framework. 

CONCLUSION 

As a result, we now understand that the Software Development Life Cycle (SDLC) is a crucial 

foundation for the better and more organized creation of optimized software systems. The SDLC 

phases are vital in allowing some good and new solutions for assisting users and businesses in a 

world where technology is evolving quickly. In order to efficiently accomplish software 

development goals, it is also preferable to implement SDLC concepts. 

REFERENCES 

[1]. Brambilla, Marco Jordi, Cabot and Manuel, Wimmer; Model-driven software engineering in 

practice; Morgan & Claypool Publishers; 2017. 

[2]. Porru, Simone, et al.; "Blockchain-oriented software engineering: challenges and new 

directions". 2017 IEEE/ACM 39th International Conference on Software Engineering Companion 

(ICSE-C). IEEE 2017. 

[3]. Morin, Brice, Nicolas Harrand; and Franck Fleurey; "Model-based software engineering to 

tame the IoT jungle"; IEEE Software 34.1; (2017); 30-36. 

[4]. Karanatsiou, Dimitra, et al.; "A bibliometric assessment of software engineering scholars and 

institutions (2010–2017)"; Journal of Systems and Software; 147 (2017); 246-261. 



Multidisciplinary International Journal                                                       http://www.mijournal.in 

  

(MIJ) 2018, Vol. No. 4, Jan-Dec                                          e-ISSN: 2454-924X; p-ISSN: 2454-8103 
 

130 

MULTIDISCIPLINARY INTERNATIONAL JOURNAL 

[5]. Di Ruscio, Davide, et al.; "Envisioning the future of collaborative model-driven software 

engineering"; 2017 IEEE/ACM 39th International Conference on Software Engineering 

Companion (ICSE-C); IEEE, 2017. 

[6]. Franzago, Mirco, et al.; "Collaborative model-driven software engineering: a classification 

framework and a research map"; IEEE Transactions on Software Engineering; 44.12 (2017); 1146-

1175. 

[7]. Mao, Ke, et al; "A survey of the use of crowdsourcing in software engineering"; Journal of 

Systems and Software; 126 (2017); 57-84. 

[8]. Buchmann, Robert Andrei, et al; "Model-aware software engineering; " Proceedings of the 

13th International Conference on Evaluation of Novel Approaches to Software Engineering; 2017. 

[9]. Lenarduzzi Valentina, Alberto Sillitti; and Davide Taibi; "Analyzing forty years of software 

maintenance models"; 2017 IEEE/ACM 39th International Conference on Software Engineering 

Companion (ICSE-C); IEEE, 2017. 

[10]. McCann, David, Elisabeth Oswald, and Carolyn Whitnall; "Towards Practical Tools for Side 

Channel Aware Software Engineering: Grey Box' Modelling for Instruction Leakages"; 26th 

USENIX Security Symposium (USENIX security 17); 2017. 

[11]. Ciccozzi, Federico, et al.; "Engineering the software of robotic system"; 2017 IEEE/ACM 

39th International Conference on Software Engineering Companion (ICSE-C); IEEE, 2017. 

[12]. Bures, Tomas, et al.; "Software engineering for smart cyber-physical systems: Challenges 

and promising solutions"; ACM SIGSOFT Software Engineering Notes; 42.2 (2017); 19-24. 


